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Inferring DNA methylation in non-skeletal 
tissues of ancient specimens
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Genome-wide premortem DNA methylation patterns can be 
computationally reconstructed from high-coverage DNA sequences of 
ancient samples. Because DNA methylation is more conserved across 
species than across tissues, and ancient DNA is typically extracted from 
bones and teeth, previous works utilizing ancient DNA methylation maps 
focused on studying evolutionary changes in the skeletal system. Here we 
suggest that DNA methylation patterns in one tissue may, under certain 
conditions, be informative on DNA methylation patterns in other tissues 
of the same individual. Using the fact that tissue-specific DNA methylation 
builds up during embryonic development, we identified the conditions that 
allow for such cross-tissue inference and devised an algorithm that carries 
it out. We trained the algorithm on methylation data from extant species 
and reached high precisions of up to 0.92 for validation datasets. We then 
used the algorithm on archaic humans, and identified more than 1,850 
positions for which we were able to observe differential DNA methylation 
in prefrontal cortex neurons. These positions are linked to hundreds of 
genes, many of which are involved in neural functions such as structural and 
developmental processes. Six positions are located in the neuroblastoma 
breaking point family (NBPF) gene family, which probably played a role 
in human brain evolution. The algorithm we present here allows for the 
examination of epigenetic changes in tissues and cell types that are absent 
from the palaeontological record, and therefore provides new ways to study 
the evolutionary impacts of epigenetic changes.

Changes in gene regulation often underlie phenotypic divergence1–4, 
making the identification of regulatory differences between archaic 
humans (Neanderthals and Denisovans) and anatomically modern 
ones a major goal of palaeogenetics5. Because RNA is rarely present in 
palaeontological remains6, changes in gene regulation must be inferred 
indirectly from the ancient DNA (aDNA) sequences themselves. Previ-
ous works showed that aDNA degradation signals can be harnessed to 
computationally reconstruct premortem genome-wide DNA methyla-
tion maps7–9. DNA methylation is a key epigenetic mark that strongly 
affects the activity level of regulatory regions such as promoters 

and enhancers10. Hence, its reconstruction provides information on 
premortem gene activity patterns in ancient individuals. Indeed, the 
reconstruction of DNA methylation in Neanderthals, a Denisovan and 
anatomically modern humans allowed us to identify regulatory differ-
ences between these human groups and associate them with pheno-
typic changes, opening the field of palaeoepigenetics9,11,12.

However, DNA methylation is tissue-specific to the extent that 
methylation patterns in two different tissues of the same organism are 
often more diverged than methylation patterns in the same tissue in 
two different species13,14. Although occasionally aDNA is extracted from 
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(superscript a), DNA methylation data are available for all three species. 
In the other tissue, denoted ‘partial’ (superscript p), DNA methylation 
data are available for the reference and the outgroup only (Fig. 1b). Our 
goal is to predict the methylation levels in the target in tissue ‘partial’.

A useful abstraction of the problem, which allows for convenient 
conceptualization of the approach, is to imagine that the DNA methyla-
tion in each CpG position is a binary variable than can be either high 
or low. We dub the combination of binary methylation levels across 
the five available DNA methylation maps in a specific CpG position a 
configuration. There are exactly three possible combinations of meth-
ylation states that describe CpG positions with differential methylation 
across the three species in tissue ‘all’ (Fig. 1c). An evolutionary meth-
ylation change in tissue ‘all’ can occur along the branch leading to the 
reference (reference-derived), along the branch leading to the target 
(target-derived) or along either of the two branches that separate the 
outgroup from the reference and target (outgroup-specific). Each of 
these three combinations may be associated with any of four different 
combination of methylation states in the tissue ‘partial’, leading to a 
total of 12 possible configurations that should be examined (Fig. 1c).

For some configurations, it is possible to determine the develop-
mental timing of the methylation change using parsimony, whereas for 
others it is not. In a previous publication17 we outlined the procedure 
and demonstrated it in a particular configuration. Here we examine 
all possible configurations, identify those in which inference on the 
‘target’ methylation can be made, develop a detailed algorithm to carry 
out the inference procedure and use it to predict DNA methylation 
levels in archaic human brains.

Of the 12 possible configurations, there are five for which par-
simony considerations provide a prediction for the timing of the 
developmental change in methylation (Fig. 1c). In three configurations 
we predict that the change was tissue-specific, in two configurations 
the change was fundamental and in all others that it is impossible to 
determine the timing of the change. In tissue-specific configurations 
we end up predicting that the methylation change detected in tissue 
‘all’ does not hold in tissue ‘partial’. These cases are less relevant for the 
current study, where our goal is to identify methylation changes in tis-
sue ‘partial’. In the remainder of the article, therefore, we focus solely 
on the two configurations in which we conclude that the methylation 
change was fundamental. Note that because data are missing in tissue 
‘partial’ of the ‘target’, we cannot make any predictions regarding 
developmental timing of the methylation change in target-derived 
changes.

Quantifying the performance
Based on the abstraction above, we developed an algorithm that 
accounts for the non-binary nature of DNA methylation and identifies 
CpG positions that are consistent with having gone through a funda-
mental methylation change (Methods). In these positions, we predict 
that the methylation levels in ‘target’ in tissue ‘partial’ are closer to 
those in the outgroup (for a reference-derived methylation change) 
or to those in the reference (for an outgroup-specific methylation 
change) (Fig. 1c).

Eventually, we would like to apply our algorithm to a triad of 
species made of modern human (reference), archaic human (target) 
and chimpanzee (outgroup). However, lacking DNA methylation in 
non-skeletal tissues of archaic humans, we optimized the parameters 
and quantified the performance based on a triad of extant species 
with available DNA methylation data in multiple tissues. To resemble 
the triad that we will eventually use, we used three modern primate 
species: modern humans as the ‘reference’, chimpanzees as the ‘target’ 
and rhesus macaques as the ‘outgroup’.

We trained the algorithm for the above triad of extant species, using 
heart as the tissue ‘all’ and kidney as the tissue ‘partial’ (Methods, Supple-
mentary Tables 1 and 2 and Extended Data Figs. 1 and 2). For predicting 
reference-derived fundamental changes, we obtained a precision of 

soft tissues such as skin15 and liver16, this is limited to a small number 
of highly conserved and relatively young samples. Generally, bones 
and teeth are the main sources of aDNA. In particular, these tissues 
are the source of all archaic human aDNA. Accordingly, our previous 
palaeoepigenetic studies focused on the evolution of the skeletal 
system9,12, but could provide only limited insights on other systems 
such as the nervous system8.

Yet, DNA methylation in one tissue still carries information on DNA 
methylation in other tissues of the same individual. The reason is that 
DNA methylation is erased almost completely in the zygote, and then 
re-established in a cell type-specific manner during development10. When 
a DNA methylation change that separates human groups is established 
during early developmental stages, it may propagate to all descendant 
cell types, and be simultaneously manifested in multiple tissues.

Here we show that for a certain class of DNA methylation changes, 
we are able to use parsimony considerations17 to predict the timing of 
the change during development, rendering skeletal DNA methylation 
changes informative on the methylation state in other tissues. Test-
ing our method on modern primate tissues, we show that we achieve 
precision of 0.7–0.92 in using DNA methylation changes in one tissue 
to predict corresponding changes in another tissue.

We applied our method to predict DNA methylation changes in 
prefrontal neurons between modern humans, archaic humans and 
chimpanzees. We found 71 genes that are associated with differential 
neuronal DNA methylation separating modern and archaic humans, 
as well as 870 genes that are associated with differential neuronal DNA 
methylation separating all humans from chimpanzees. We show that 
some of these genes are involved in neural functions. Moreover, we 
discovered six methylation changes in genes that carry the Olduvai 
domain, whose copy number is associated with an increase in brain 
volume and cognitive function, suggesting that these changes might 
be important in human brain evolution.

Results
Given the almost complete reset of DNA methylation patterns in the 
zygote as part of the epigenetic reprogramming process18, evolutionary 
differences in DNA methylation patterns between species are mani-
fested as changes that build up during embryonic development. A 
methylation change that occurs in cells that are not fully differenti-
ated would propagate to all descendant cell lineages, unless reverted 
by a later change. For example, if a site goes through an evolutionary 
methylation change that builds up at a time that precedes the split of 
the mesodermal and the ectodermal germ layers, the difference in 
methylation level would show up both in bone and in neurons (Fig. 1a).

For any pair of tissues or cell types, we denote by ‘fundamental 
changes’ all those evolutionary changes to DNA methylation that were 
established before the developmental split between the two tissues 
or cell types. Evolutionary DNA methylation changes that occurred 
after this developmental time point would be called tissue-specific 
changes (Fig. 1a). Note that the terms tissue-specific and fundamental 
methylation changes should be always understood in the context of 
two specific tissues or cell types. For example, a methylation change 
affecting all endodermal tissues is still considered tissue-specific if we 
compare, for example, lung with bone. The basis of the algorithm we 
develop below is the fact that if we are able to determine, for two tissues 
or cell types, whether an evolutionary change in DNA methylation is 
either fundamental or tissue-specific, then the methylation level in 
one tissue or cell type would be informative on the methylation level 
in the other tissue or cell type.

The inference procedure
We consider a three-species phylogeny, in which the species are marked 
as ‘reference’ (superscript r), ‘target’ (superscript t) and ‘outgroup’ 
(superscript o). For these three species, we examine five DNA meth-
ylation maps in two tissues (or cell types). In one tissue, denoted ‘all’ 
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0.85, compared with an average of 0.22 in permuted data. For predict-
ing outgroup-specific fundamental changes, we obtained a precision of 
0.77, compared with an average of 0.40 in permuted data (Fig. 2a). Ele-
vated precision for permuted data when predicting outgroup-specific 
fundamental changes is expected and, in fact, inherent to our algorithm. 
This stems from the fact that the evolutionary distance between the 
outgroup and the reference and/or target is, by definition, longer than 
the evolutionary distance between the target and the reference, leading 
to a greater similarity in the DNA methylation patterns of the reference 
and the target, and hence to an increased probability of finding by 
chance configurations that resemble outgroup-specific fundamental 
changes (‘Discussion’). In any case, for both reference-derived changes 
and outgroup-specific changes, the algorithm shows training set preci-
sion which is significantly higher than random.

We validated our algorithm using DNA methylation data from liver 
and lung in these three species, which are tissues on which the algo-
rithm was not trained. In each comparison, the precision achieved using 

the real data significantly exceeded the precision that was achieved 
using permuted data. The observed precision in predicting fundamen-
tal changes was in the range 0.7–0.84, compared with 0.21–0.37 on 
permuted data (Fig. 2b and Supplementary Table 3). Flipping the roles 
of reference and target, namely picking modern human as the target 
and chimpanzees as the reference, yielded very similar performance 
estimations (Supplementary Table 3 and Extended Data Fig. 3). To 
evaluate the statistical significance of the precision levels we obtain, 
we performed 1,000 permutations, in which in each permutation we 
randomly shuffled the tags ‘reference’, ‘target’ and ‘outgroup’ across 
the samples, keeping the total number of reference, target and out-
group samples fixed. For reference-derived inference, we obtained 
that 0.004 of the permutations yielded higher precision than our algo-
rithm, whereas this fraction was 0.021 for outgroup-specific inference. 
Combined, these results show that our algorithm achieves significantly 
higher precision than expected by chance, even when generalized to 
tissues and a species combination on which it was not trained.
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Fig. 1 | Conceptual framework of the algorithm. a, Schematic embryonic 
development trees. DNA methylation changes along the tree would propagate 
to all descendant lineages. Considering a pair of tissues, for example bone and 
brain, methylation changes that occurred earlier than their developmental  
split (right) are fundamental and will affect both tissues. Changes that occurred 
after the split (left) are tissue-specific and will affect only one of the tissues.  
b, Different triad phylogenies and paired tissues are considered by the algorithm 

for validation and test sets. Methylation data are missing for the target ‘t’ in tissue 
‘p’, but available for tissue ‘a’ for all species. c, Identification of configurations, 
out of all 12 possible, where the methylation state in the target in tissue ‘p’ can 
be predicted. When prediction is possible, the type of methylation change, 
whether fundamental (F) or tissue-specific (TS), is denoted. Note that for clarity, 
methylation levels are considered as binary variables.
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Because of the need to achieve sufficient statistical power, recon-
structing DNA methylation maps of aDNA requires the use of moving 
averages across windows of consecutive CpG positions8. Although we 
showed in the past that this smoothing does not substantially affect the 
detection of differentially methylated regions (DMRs)9, we neverthe-
less wished to examine the effect of smoothing on the precision of our 
algorithm. We therefore applied the algorithm to a smoothed version 
of the above data (Methods) and found that the precision remains very 
similar to that obtained for non-smoothed data, and that it is always 
significantly higher than the precision achieved on permuted data 
(Supplementary Table 3).

Identifying differential methylation in neurons
The method we developed can be used to infer on aDNA methylation 
in any tissue. Because the large volume and high complexity of the 
human brain stand out as hallmarks of modern humans, we decided 
to demonstrate the applicability of our method to this organ first. To 
this end, we applied the algorithm with bone serving as the tissue ‘all’ 
and neuronal cell lines from the prefrontal cortex as the tissue ‘partial’.

For bones, we considered published DNA methylation data (includ-
ing data generated by us in previous works), data of four human femora 
measured by us for the current study and reconstructed DNA meth-
ylation maps in ancient samples, including maps we reconstructed in 
previous works10,17 and a new map of Mesolithic anatomically modern 
human from Sweden19 that we reconstructed for this study (Methods 
and Supplementary Table 4). DNA methylation in prefrontal cortex 
cell lines was taken from published studies20,21. In total, neuronal DNA 
methylation data comprise 26 modern humans, 11 chimpanzees and 
15 macaques, and bone DNA methylation data comprise 11 modern 
humans (5 measured, 6 reconstructed), 2 archaic humans, 7 chimpan-
zees and 10 macaques.

We first estimated the precision of our algorithm on a triad of 
extant species, composed of modern human as reference, chimpanzee 
as target, and rhesus macaque as outgroup. This yielded a precision of 
0.81 in predicting outgroup-specific fundamental changes, and 0.92 
in predicting reference-derived fundamental changes, both being 
significantly higher than the values achieved for random permuta-
tions (Fig. 3a).

We then applied the algorithm to the triad composed of mod-
ern human as ‘reference’, archaic human as ‘target’ and chimpanzee 
as ‘outgroup’, and identified 1,750 CpG positions presenting puta-
tive outgroup-specific fundamental changes, and 122 CpG positions 

presenting putative reference-derived fundamental changes. Of these, 
1,131 CpG positions (64.6%), presenting putative outgroup-specific 
changes, are located in the promoter or gene body of 870 genes, and 80 
CpG positions (61.1%), presenting putative reference-derived changes, 
are located in the promoter or gene body of 71 genes (Supplementary 
Table 5).

Archaic humans, which serve as ‘target’, comprise only two sam-
ples. To assess the possible reduction in power because of this small 
sample set, we repeated the analysis on the triad of extant species, but 
randomly downsampled the ‘target’ chimpanzee from 11 samples to 
only 2. We still detected 7 of the original 8 CpG positions associated 
with reference-derived changes, and 483 of the 531 original CpG posi-
tions associated with outgroup-specific changes. This suggests that 
the use of only two samples in the target set reduces the power of our 
analysis by approximately 10–12%.

We accounted for batch effects and evaluated the false discovery 
rate (FDR) for our actual triad by performing 1,000 permutations, 
shuffling the tags ‘reference’, ‘target’ and ‘outgroup’ of the bone sam-
ples and counting the number of detected reference-derived and 
outgroup-specific changes. On average, we observed 0.49 reference- 
derived CpG positions (FDR = 0.005) and 68.6 outgroup-specific CpG 
positions (FDR = 0.044).

A considerable number of the CpG positions associated with fun-
damental changes are grouped in clusters. This observation probably 
reflects the known correlation between adjacent CpG positions, and 
indicates regional changes in methylation in regulatory regions, where 
one often finds a close grouping of multiple differentially methylated 
CpGs22,23. We hypothesized that even isolated CpG positions showing 
fundamental changes would represent regional methylation changes. 
Namely, that the adjacent CpG positions would show changes in DNA 
methylation compatible with the same fundamental changes, despite 
not crossing the significance threshold. To test this, we computed the 
average methylation in such adjacent CpG positions, and compared it 
with both the nearby isolated CpG positions showing a fundamental 
change and the average methylation level in the genome. As expected, 
we found that in 89.1% of the cases the methylation level in adjacent 
CpGs clustered with the neighbouring isolated CpG position, suggest-
ing that even loci featuring an isolated CpG position with a fundamental 
change might, in fact, represent a regional methylation change.

CpG positions with fundamental methylation changes are 
expected to preferentially fall inside regions we detected in a previous 
work as differentially methylated across the same triad, using a subset 
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of the bone samples used in the current study9. Indeed, 172 of the 1,750 
outgroup-specific positions (9.8%) fall in the list of 2,031 DMRs that 
separate chimpanzees and humans (P < 10−200 hypergeometric test), 
and 3 of the 122 reference-derived positions (2.5%) fall in the list of 873 
anatomically modern human-derived DMRs (P = 2.8 × 10−6). Likewise, 
137 of the 870 (15.7%) genes associated with outgroup-specific changes 
overlap with the list of 1,185 differentially methylated genes separating 
chimpanzees and humans (P = 7.9 × 10−40), and 5 of the 71 (7%) genes 
associated with reference-derived changes overlap with the list of 588 
differentially methylated genes that have changed in modern humans 
(P = 4.8 × 10−3). Notably, we do not expect a complete overlap, because 
we used an upgraded version of the reconstruction algorithm, includ-
ing new filtering techniques and histogram matching24.

Testing for enrichment in biological functions of our gene lists 
yielded no significant terms. This is expected, given that a fundamental 
methylation change is, by definition, a change that is shared across 
multiple tissues. Specifically, fundamental methylation changes that 
are shared between bone and brain could be associated with brain, bone 
or any other tissue (Fig. 1a). Therefore, these changes could be related 
to a wide range of functions, making it unlikely that specific functional 
enrichment would be observed. However, given the importance of the 
brain in human evolution, and the lack of methylation data from brain 
in archaic human, we focus here on changes that might have a relation 
to the nervous system.

We focused on genes associated with a particularly large number 
of positions with fundamental changes (Fig. 4 and Supplementary 
Table 6). In this context, we identified 26 outgroup-specific changes 
and 3 reference-derived changes localized in the locus containing 
the genes ZNF707 and CCDC166. Notably, our knowledge about the 
functions of these genes is limited, with scant evidence pointing at 
potential relevance to cancer25,26. Nonetheless, given its classification 
as a zinc-finger protein, it is reasonable to hypothesize that ZNF707 
probably possesses an as-yet undiscovered regulatory role.

Next in terms of the number of fundamental changes is the gene 
ADAMTS2, which exhibits 15 outgroup-specific changes. This gene 
product regulates neuronal migration by cleaving reelin27, and has been 
implicated in schizophrenia because it activates dopaminergic signal-
ling and exhibits overexpression in the blood of people during episodes 
of psychosis (a phenomenon that can be reversed by antipsychotic 
medications)28,29. Moreover, in the Human Phenotype Ontology30, 
ADAMTS2 shows associations with language impairment, intellec-
tual disability, microcephaly, neurodevelopmental delay and other 
brain-related terms. The gene NF-YA harbours five outgroup-specific 
changes. NF-YA is a component of the NF-Y transcription factor, which 
protects neurons from cell death31. Inactivation of NF-Y has been linked 

to various forms of neuronal pathologies32,33. PIWIL1 exhibits seven 
outgroup-specific fundamental changes and regulates neuronal polari-
zation and migration34. BRCA1 harbours five outgroup-specific funda-
mental changes. Apart from being one of the most well-studied tumour 
suppressors, BRCA1 plays a role in the survival of neural progenitors35. 
It is also expressed in the hippocampus, and has been observed to be 
under-expressed in patients with Alzheimer’s disease. Knocking down 
this gene in the dentate gyrus leads to learning and memory deficits, 
impairs synaptic plasticity and neuronal shrinkage36. Notably, hypo-
methylation in a specific region in BRCA1, which does not overlap any 
of the positions with fundamental changes, has been associated with 
Alzheimer’s disease37. Moreover, a variant of BRCA1 has been asso-
ciated with intellectual disability38. AHRR, which also harbours five 
changes, represses aryl hydrocarbon receptor (AHR), an important 
mediator for many cellular events. The main hallmarks of brain ageing, 
including oxidative stress, neuroinflammation and neurogenesis, are 
affected by AHR, suggesting its function as a regulator for ageing in the 
brain, together with its effect on the nervous system development39,40. 
The deubiquitylase OTUB1 also exhibit five changes encoding the 
gene OTUB1. This gene mediates neuronal survival after intracerebral 
haemorrhage41,42. The effects of this protein on neuroimmune response 
contribute to pathologies associated with brain diseases such as  
Parkinson’s disease and multiple sclerosis43,44.

Turning our attention to genes associated with reference-derived 
changes, of eight such genes with three altered positions (the highest 
number of such alternations in a gene), three show a relationship to 
the brain. Mutations in TMEM216 have been linked to syndromes that 
involve brain abnormalities45,46. TMEM216 regulates ciliogenesis, a 
process with substantial importance in brain development, and disrup-
tions in TMEM216 function lead to impairments in various neurodevel-
opmental processes47. Another gene linked to ciliary function is CROCC. 
CROCC encodes rootletin, a protein involved in the formation of ciliary 
rootlets. Mutations in this gene in Drosophila have been associated with 
sensory deficits48. PSMC2 is a component of the 26S proteasome com-
plex that plays a role in various neural processes, including synaptic 
plasticity49,50 and brain autophagy51. Notably, impairments in the 26S 
proteasome complex have been strongly associated with the presence 
of brain inclusions such as alpha-synuclein and tau tangles52.

Five CpG positions associated with outgroup-specific fundamental 
changes, and another one associated with reference-derived changes, are 
located in genes from the neuroblastoma breaking point family (NBPF) 
gene family, inside the LOC100288142 locus (Fig. 4). NBPF proteins are 
enriched with a protein domain called the Olduvai domain that is key to 
human brain evolution. This domain, which is found almost exclusively in 
NBPF proteins, went through a human-specific increase in copy number, 
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reaching approximately 300 copies. Chimpanzees show less than half 
that number of copies, and the number drops to several dozens of copies 
in other Old World monkeys, and to around a single copy in non-primate 
mammals. The domain is absent in non-mammals53. Olduvai domain 
copy number variation is correlated with brain volume54,55, cognitive 
functions56 and autistic symptoms57–59. It is also negatively correlated 
with schizophrenia60. NBPF genes in general have been found to enhance 
neural stem cell proliferation61. Four of the five outgroup-specific fun-
damental changes are located in NBPF10, one of the NBPF genes with 
the highest number of human-specific Olduvai domain copies. NBPF10 
is adjacent to NOTCH2NL, an additional gene linked to human brain 
volume62,63, and it has been suggested that the two evolved in tandem64.

To further explore potential regulatory effects of the differential 
methylation, we examined whether CpG positions with fundamental 
methylation changes tend to overlap enhancers associated with bones 
and neurons more than would be expected by chance (Methods). In 
bones, we observed a significant overlap for both outgroup-specific 
(298 intersecting positions; P = 9.04 × 10−10) and reference-derived CpG 
positions (28 intersecting positions; P = 2.66 × 10−4). In neurons, sig-
nificant overlap was only evident for outgroup-specific CpG positions  
(81 intersecting positions; P = 5.37 × 10−7), whereas no significant over-
lap was observed for reference-derived CpG positions (4 intersecting 
positions). Next, we examined genes that are associated with enhancers 
that overlap CpG positions with differential methylation. Although 
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Fig. 4 | Genes featuring multiple fundamental DNA methylation changes. 
a, Genes featuring more than four outgroup-specific fundamental changes. 
Instances in which changes overlap multiple genes are consolidated in the same 
column. Methylation alterations overlapping genes associated with the Olduvai 

domain (NBPF8, NBPF9 and NBPF10) are collectively assembled in the column 
furthest right. b, Genes featuring more than two reference-derived fundamental 
changes, along with the reference-derived change that intersects with NBPF9, 
which harbours the Olduvai domain.
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there are no such genes for reference-derived CpG positions, there are 
330 and 480 genes for outgroup-specific CpG positions in bones and 
neurons, respectively. Enrichment analysis of these genes revealed 
similar patterns, despite representing two distinct tissues, highlighting 
organelle functions over tissue-specific ones (Supplementary Table 7). 
This aligns with expectations, considering that fundamental changes 
affect multiple tissues.

We next searched for motifs that overlap these enhancers and 
transcription factors that bind these motifs (Supplementary Table 8). 
In outgroup-specific changes we found enrichment of transcription 
factors that are related to brain development (GLI1, GLI2, ZIC1, NHLH2, 
NR2F2, ZIC2 and ZNF148; FDR = 2.3 × 10−3) and specifically forebrain 
development (GLI1, GLI2, ZIC1, NHLH2 and NR2F2; FDR = 0.01).

Application to bulk prefrontal cortex
In addition to prefrontal neurons, DNA methylation is also available 
from bulk prefrontal cortex tissue from humans, chimpanzees and 
rhesus macaque (Methods and Extended Data Fig. 4)65,66. To exam-
ine whether the methylation changes we identified in neurons can be 
detected in whole tissues, we repeated the analysis with these bulk 
DNA methylation measurements.

We first evaluated the performance of our algorithm using the 
same triad of extant species as we used before, setting modern human 
as ‘reference’, chimpanzee as ‘target’ and rhesus macaque as ‘outgroup’, 
with bone serving as the tissue ‘all’ and bulk prefrontal cortex as the 
tissue ‘partial’. Unfortunately, there is a small number of samples of 
DNA methylation in bulk prefrontal cortex (three humans, three chim-
panzees and two rhesus macaques) with relatively lower coverage 
(Supplementary Table 4), compromising the power of our approach 
to detect differentially methylated positions. Indeed, although the 
precision we achieved is significantly higher than for permuted data 
(P < 10−4), we observed lower values than in previous analyses. We 
obtained a precision of 0.66 in predicting reference-derived changes 
(compared with a mean of 0.32 for permuted data) and a precision of 
0.55 in predicting outgroup-specific changes (compared with a mean 
of 0.36 for permuted data) (Fig. 3b).

We then considered archaic humans as ‘target’ and chimpanzees 
as ‘outgroup’ and applied our algorithm to predict differential methyla-
tion in bulk brain tissue. We found 396 CpG positions associated with 
putative outgroup-specific changes and 53 CpG positions associated 
with putative reference-derived changes. The outgroup-specific CpG 
positions are associated with 248 genes and the reference-derived 
CpG positions are associated with 35 genes (Supplementary Table 9). 
Reassuringly, we found high consistency between these CpG positions 
and those identified using prefrontal neurons. In total, 156 of the 396 of 
the outgroup-specific CpG positions appear among the 1,750 positions 
identified using prefrontal neurons (P < 10−300, hypergeometric test) 
and 8 of the 53 of the reference-derived CpG positions appear among 
the 122 positions identified using prefrontal neurons (P = 4.7 × 10−44). 
Similarly, of the 248 genes associated with outgroup-specific changes 
in bulk prefrontal cortex, 116 were found in the corresponding list of 
870 genes identified using prefrontal neurons (P < 10−100) and 8 of the 35 
genes associated with reference-derived changes were also identified 
using neurons (P = 3.54 × 10−16).

Discussion
Based on the embryonic developmental timing of an evolutionary 
methylation change, we defined two families of changes; fundamen-
tal changes are those that occurred before the developmental split 
between a pair of tissues, whereas tissue-specific changes are those 
that occurred after the split. In this work, we developed an algorithm 
to detect CpG positions that underwent fundamental changes, because 
they result in DNA methylation differences across the examined species 
that are also replicated in the tissue ‘partial’ (Fig. 1c). Similar methodol-
ogy can be used to detect tissue-specific changes as well, although these 

result in no change in DNA methylation across the species in the tissue 
‘partial’ (Fig. 1c), hence potentially presenting more limited evolution-
ary interest. The main algorithmic modification that is required would 
be to use statistical tests for equivalence, such as the two one-sided 
t-tests (TOST) procedure67.

The algorithm can be used to determine the methylation state in 
non-skeletal tissues of archaic humans, as long as methylation data are 
available for this tissue in both modern humans and chimpanzees (or 
any other non-human ape, in the case that bone methylation data are 
available for this species as well). This ability to obtain information on 
DNA methylation in archaic tissues that are not accessible in the palae-
ontological record opens new ways to examine changes in gene regula-
tion and their potential effect on evolutionary adaptations in humans.

To quantify performance, we tested the algorithm on three 
extant species, comprising modern humans, chimpanzees and rhe-
sus macaques (Fig. 2a). The longer branches on this phylogenetic 
tree (median divergence time between modern humans and rhesus 
macaques is 28.9 million years ago (Ma), compared with the median 
divergence time between modern humans and chimpanzees of 6.4 Ma 
(ref. 68)) result in an underestimation of the performance of the algo-
rithm, because the likelihood of independent reversal of the meth-
ylation state along each branch increases. We therefore estimate that 
our algorithm works with even higher precisions than those reported 
here. We used the algorithm to find genomic positions in which the 
methylation state can be determined in the brains of archaic humans. 
We focused on the brain because of its central role in human evolution 
and the potential implications of brain-related differences between 
human groups, and between humans and chimpanzees. However, 
the algorithm we present is general and can be used to determine the 
methylation state in other archaic tissues. In fact, brain is probably 
among the most challenging choices, given its large developmental 
distance from bone (Fig. 1a). A tissue that is developmentally closer to 
bone, such as muscle or heart, is likely to result in a larger number of 
positions whose methylation state can be determined.

We showed that we are able to detect two types of fundamental 
DNA methylation changes. Reference-derived changes are those in 
which DNA methylation levels in modern humans are different from 
those in both archaic humans and chimpanzees, representing methyla-
tion patterns that are unique to modern humans. Outgroup-specific 
changes are those in which DNA methylation levels in both modern 
and archaic humans are different from those in chimpanzees, rep-
resenting methylation patterns that are shared across modern and 
archaic humans. In all analyses, we detect fewer reference-derived 
positions than outgroup-specific ones, although with higher preci-
sion. This is expected considering the much shorter evolutionary 
time span in which the methylation change could have occurred for 
reference-derived changes compared with outgroup-specific ones 
(Fig. 1b). Shorter distances mean fewer methylation change events, 
which result in lower numbers of detected events, but also in lower 
probability for reversal of methylation changes, and therefore higher 
precision of parsimony-based inference.

We present here evidence for a strong connection between genes 
associated with fundamental changes and neuronal functions. Among 
the most interesting findings is the identification of six fundamental 
changes in NBPF genes carrying Olduvai domains, which seem to be 
associated with human brain evolution. Whereas the association of 
Olduvai domains to brain evolution has focused thus far on their copy 
number, our findings suggest that methylation changes might also have 
a role in this; in particular, NBPF10, has four fundamental methylation 
changes and is also one of the genes with the largest number of Olduvai 
domains. With that, future research is imperative to establish causality 
and validate the functional importance of these methylation changes 
on phenotypes.

The number of CpG positions that can be tested for differen-
tial methylation is constrained by the limited availability of DNA 
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methylation data from primate bone, because part of the data was 
produced using Illumina Infinium MethylationEPIC BeadChip methyla-
tion array (Supplementary Table 4), which represent approximately 
3% of (but enriched for functional) CpG positions in the genome. As a 
result, our set of CpG positions associated with fundamental changes 
represents only a subset of the positions that show such an association. 
In addition, restrictions come from the fact that we considered a CpG 
position only if data were available in at least two samples from each 
group. This criterion resulted in a restricted set of CpGs available for 
analysis, ranging from 1% to 17% of autosomal CpGs, depending on the 
tissues selected for each analysis. These limitations underscore the 
need for an expanded dataset of bone methylation.

For reference-derived changes, we require that the mean methy-
lation in the ‘target’ will be closer to the mean methylation of the ‘out-
group’ than to that of the ‘reference’, whereas for outgroup-specific 
changes we require the opposite. Addition of this requirement was 
important for reducing the level of false predictions, which result from 
the small number of samples in the ‘target’ compared with the other 
groups. However, when this additional requirement is used, the algo-
rithm is unable to detect CpG positions that have gone through gradual 
methylation change (for example, that the ‘outgroup’ is unmethyl-
ated, the ‘target’ is partially methylated and the ‘reference’ is highly 
methylated). Such positions could potentially be detected as being 
simultaneously reference-derived and outgroup-specific methylation 
changes. However, mean methylation in the ‘target’ group will be closer 
to either the ‘outgroup’ or the ‘reference’. Therefore, the additional 
requirement will lead the algorithm to detect only one of the two types 
of fundamental changes, and information on gradual changes will be 
lost. We hope that in the future more methylation maps of archaic 
humans will be published, making use of the additional requirement 
unnecessary, and allowing for the detection of gradual fundamental 
methylation changes.

Overall, we present an algorithm to infer DNA methylation in 
non-skeletal archaic tissues. The algorithm can be applied to any triad 
of species or groups and could be useful whenever DNA methylation 
in a certain tissue is unavailable or difficult to obtain.

Methods
DNA methylation data
We collected and generated DNA methylation data from seven tis-
sues and cell types (neurons, bone, kidney, heart, liver, lung and bulk 
brain) across three species (modern human, chimpanzee and rhesus 
macaque). In addition, we used reconstructed DNA methylation data 
in bones of modern and archaic humans. Data were collected only from 
autosomes, to avoid the unique methylation patterns that characterize 
sex chromosomes.

Bone DNA methylation of present-day individuals published in 
this study. DNA methylation maps from four femur head bones from 
present-day humans were generated using whole-genome bisulfite 
sequencing (WGBS). Patients were females with osteoarthritis. Sam-
ples were extracted during total hip replacement surgery and were 
taken from the healthy part of the bone. All four patients signed a form 
according to Helsinki approval 0178-13-HMO. DNA extraction and the 
WGBS protocol are described in a previous publication9 (Supplemen-
tary Table 4). In brief, DNA was extracted from bones using a QIAamp 
DNA Investigator kit (Qiagen, catalogue no. 56504) and DNA libraries 
were built with the Illumina TruSeq Sample Preparation kit. Bisulfite 
treatment was applied in two rounds using the EpiTect Bisulfite kit (Qia-
gen) and paired-end sequencing was performed on an Illumina Hi-Seq 
2000 instrument. We aligned the reads to hg19 genome assembly using  
Bismark v.0.23.0 with the following parameters: --bowtie2 --non_bs_mm 
-p 4 --multicore 4. We then used bismark_methylation_extractor to 
extract methylation calls with the following parameters: -p --parallel 4 
--bedGraph. We did not perform filtration of CpG positions by coverage, 

as we used the default Bismark setting of including positions with a 
minimum coverage of 1×.

Previously published modern DNA methylation. Neuronal data 
include WGBS DNA methylation data measured in neurons isolated 
from prefrontal cortices of humans, chimpanzees and macaques. Data 
for humans were downloaded from Gene Expression Omnibus (GEO) 
accession number GSE107638 (ref. 20), taking only the 25 healthy 
controls. Data for chimpanzees and macaques were downloaded from 
GEO accession number GSE151768 (ref. 21). WGBS DNA methylation 
data for kidneys, hearts, livers and lungs of four specimens for each of 
these species were downloaded from GEO accession number GSE112356 
(refs. 69,70). Bulk WGBS brain data that were generated from pre-
frontal cortices of three modern humans and three chimpanzees was 
downloaded from GEO accession number GSE37202 (ref. 66). Bulk 
WGBS data of two macaques were downloaded from GEO accession 
number GSE77124 (ref. 65). For bone, we used ten Illumina Infinium 
MethylationEPIC BeadChip (850K) methylation arrays from rhesus71 
and data acquired by Gokhman et al.9 including one modern human 
and one chimpanzee WGBS map, one chimpanzee reduced representa-
tion bisulfite sequencing map and four chimpanzee 850K methylation 
arrays (Supplementary Table 4).

Most non-human DNA methylation data were already mapped 
to the human hg19 reference genome. However, this was not done for 
rhesus bulk brain samples, and we therefore mapped these data to hg19 
using liftOver72. This mapped ~30% of the rhesus CpG positions to a cor-
responding CpG position in human. However, in a significantly enriched 
number of cases, the rhesus CpG positions were mapped to a position 
preceding a human CpG position by a single base (Extended Data 
Fig. 4). We considered these as valid mappings, ending up with ~40%  
of the rhesus CpG positions being successfully mapped to the human 
hg19 genome reference.

Ancient DNA methylation maps. We used our newest version of the 
RoAM software tool24 to reconstruct the methylome of a Mesolithic 
anatomically modern human individual from Stora Karlsö, Sweden 
(~9,000 years ago) that had been previously sequeneced19 (Supplemen-
tary Table 4). In addition, we used our previously published methylation 
maps of five ancient anatomically modern humans9, one Neanderthal 
and one Denisovan8, which at the time of writing are the only uracil DNA 
glycosylase-treated high-coverage archaic samples, two prerequisites 
for computational reconstruction of aDNA methylation17.

Batch effects. To minimize batch effects stemming from combining 
data from different sources, we took several measures. First, all data 
used for optimization and cross-validation were taken from the same 
laboratory69,70. Similarly, all the brain data, including both prefron-
tal cortex neurons and bulk brain tissue, were taken from the same 
laboratory20,21,65,66.

Most of the bone data were produced by us, either specifically 
for this paper or in previous work9. To address consistency between 
the modern bone samples and the ancient ones, we used histogram 
matching during the DNA methylation reconstruction, fitting the recon-
structed histogram to that of previously published modern bone data9,73.

Finally, remaining batch effects are accounted for in the estimated 
false discovery rates of our method.

Detecting CpGs positions with differential DNA methylation
The algorithm receives methylation data from three species and two 
tissues (Fig. 1b). Only CpG positions where, for each tissue and spe-
cies, data are available from at least two samples were considered. In 
addition, only positions where the variance in methylation levels in 
each tissue and species was <0.08 were considered. This threshold was 
selected to guarantee that a minimum set of two samples will have at 
most a 40% difference in methylation level.
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Identifying reference-derived fundamental changes. Let us have 
methylation data for N CpG positions and let 0 ≤ ms,u

i, j ≤ 1 be the meas-
ured methylation level of sample j at CpG position i (i = 1, …, N), in 
species s and tissue u. We say that the methylation level at CpG position 
i is reference-derived in tissue ‘all’ if

||tr,ai || ≥ tr,a + krda σr,a.

Here, tr,ai  is the statistic of an equal-variance t-test at CpG position 
i in tissue ‘all’, contrasting the ‘reference’ with the ‘target’ and ‘out-
group’, and tr,a and σr,a are the estimators of the mean and the standard 
deviation of the statistic across the N positions. krda  is a parameter.

Similarly, we say that CpG position i shows differential methylation 
between the ‘reference’ and the ‘outgroup’ in tissue ‘partial’ if

||tro,pi
|| ≥ tro,p + krdp σro,p.

Here, tro,pi  is the statistic of an equal-variance t-test at CpG position 
i in tissue ‘partial’, contrasting the ‘reference’ with the ‘outgroup’, and 
tro,p and σro,p are the estimators of the mean and the standard deviation 
of the statistic across the N positions. krdp  is a parameter.

To identify reference-derived fundamental changes (left-hand 
column in Fig. 1c), we look for CpG positions i that satisfy:

||t r,ai
|| ≥ tr,a + krda σr,a (1a)

||t ro,pi
|| ≥ tro,p + krdp σro,p, (1b)

t r,ai ⋅ t ro,pi > 0. (1c)

Inequality (equation (1c)) guarantees that the methylation dif-
ference between the ‘reference’ and the ‘outgroup’ in both tissues is 
in the same direction.

We found it useful to add a fourth condition to equation (1a–c), 
verifying that the mean methylation in ‘target’ is closer to the mean 
methylation of the ‘outgroup’ than to the mean methylation of the 
reference. If mr,a

ι , mt,a
ι  and mo,a

ι  are the mean methylation across samples 
in tissue ‘all’ in position i of the ‘reference’, ‘target’ and ‘outgroup’, 
respectively, then

|||m
t,a
ι −mr,a

ι
||| >

|||m
t,a
ι −mo,a

ι
||| . (1d)

In the implementation, we kept this additional condition optional 
because the algorithm detects methylation changes in high precision 
even without it. However, it is advisable to use it when the number of 
samples in ‘target’ is small compared with the other groups, because it 
prevents mispredictions that arise as a result of the lower weight of the 
‘target’ samples in the t-test. Because only two archaic human samples 
serve as ‘target’ in the current study, we used this additional condition 
throughout the paper. Positions that satisfy equation (1a–d) are those 
for which we predict that the methylation in ‘target’ in tissue ‘partial’ 
clusters with that in ‘outgroup’, and different from that in ‘reference’ 
(Fig. 1c).

Identifying outgroup-specific fundamental changes. We follow 
a similar approach to identify fundamental changes in which the 
methylation change in tissue ‘all’ is outgroup-specific (right-hand 
column in Fig. 1c). CpG positions that we predict have gone through 
outgroup-specific fundamental changes should satisfy:

||to,ai
|| ≥ to,a + kosa σo,a (2a)

||tro,pi
|| ≥ tro,p + kosp σro,p, (2b)

to,ai ⋅ tro,pi > 0. (2c)

Here, to,ai  is the statistic of an equal-variance t-test at CpG position 
i in tissue ‘all’ contrasting the ‘outgroup’ with the ‘target’ and ‘reference’, 
to,a and σo,a are the estimators of the mean and the standard deviation 
of the statistic across the N positions, and kosa  and kosp  are parameters. 
Note that the t-test for tissue ‘partial’, equation (2b), is identical to the 
one for the reference-derived fundamental changes, equation (1b), 
because in both cases we wish to find a significant difference in tissue 
‘partial’ between the ‘outgroup’ and the ‘reference’. Yet, we allow the 
parameters krdp  and kosp  to be potentially different.

Here, too, we added a fourth condition that guarantees that the 
mean methylation in ‘target’ is closer to ‘reference’ than to ‘outgroup’,

|||m
t,a
ι −mo,a

ι
||| >

|||m
t,a
ι −mr,a

ι
||| . (2d)

In the implementation, this condition is optional, but we used it 
throughout this work.

Measuring performance. Whenever the true value of the methylation 
in the ‘target’ at tissue ‘partial’ is known, we can use it to estimate the 
precision of our algorithm. To this end, we define CpG positions for 
which there is truly a reference-derived methylation change in tissue 
‘partial’ as those that satisfy

||t r,pi
|| ≥ tr,p + krdt σr,p. (3)

Here, t r,pi  is the statistic of an equal-variance t-test at CpG position 
i in tissue ‘partial’, contrasting the ‘reference’ with the ‘target’ and 
‘outgroup’, tr,p and σr,p are the estimators of the mean and the standard 
deviation of the statistic across the N positions, and krdt  is a parameter. 
Similarly, we define CpG positions for which there is truly an 
outgroup-specific methylation change in tissue ‘partial’ as those that 
satisfy

||t o,pi
|| ≥ t o,p + kost σo,p, (4)

where to,pi  is the statistic of an equal-variance t-test at CpG position i in 
tissue ‘partial’, contrasting the ‘outgroup’ with the ‘target’ and ‘refer-
ence’, to,p and σo,p  are the estimators of the mean and the standard 
deviation of the statistic across the N positions, and kost  is a 
parameter.

Let Sp be the set of CpG positions for which we predict a reference- 
derived fundamental change, namely, those positions that satisfy 
equation (1a–d). Let Se be the set of reference-derived fundamental 
changes that are considered ‘true’ changes, defined as the collection 
of positions that satisfy

||tr,ai || ≥ tr,a + krda σr,a (5a)

||tr,pi || ≥ tr,p + krdt σr,p, (5b)

tr,ai ⋅ tr,pi > 0, (5c)

where equation (5a) is identical to equation (1a) and (5b) is identical 
to equation (3). Then, the precision of our algorithm that predicts 
reference-derived fundamental changes is

Prc =
|Sp ∩ Se|
|Sp|

, (6)

where |S| is the size of set S.
Analogously, for outgroup-specific fundamental changes we 

define Sp as the set of positions that satisfy equation (2a–d), and Se as 
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the set of positions that are taken as ‘true’ outgroup-specific funda-
mental change, namely the set of positions that satisfy

||to,ai
|| ≥ to,a + kosa σo,a, (7a)

||to,pi
|| ≥ to,p + kost σo,p, (7b)

to,ai ⋅ to,pi > 0, (7c)

where equation (7a) is identical to equation (2a) and (7b) is identical to 
equation (4). Precision is defined as in equation (6).

Parameter estimation. Overall, the algorithms that predict reference- 
derived changes and outgroup-specific changes are independent of each 
other, and each respective set of parameters can be optimized separately. 
Each algorithm uses two parameters, krda  and krdp , for predicting 
reference-derived changes (equation (1a–d)), and kosa  and kosp  for predict-
ing outgroup-specific changes (equation (2a–d)). Moreover, the perfor-
mance of each algorithm is determined using an additional parameter, 
either krdt  for the reference-derived changes or kost  for the 
outgroup-specific changes. All three parameters for each algorithm were 
optimized together. Permuted data were generated by pairing a random 
CpG position in tissue ‘partial’ to each position in tissue ‘all’. For each 
analysis, 10,000 permuted datasets were generated. The optimized 
parameters were chosen as the values that gave the largest difference 
between the precision of the algorithm on the real data and its precision 
on permutated data.

We performed the optimization process by using chimpanzee as 
‘target’, modern humans as ‘reference’ and rhesus macaque as ‘out-
group’ and choosing heart as tissue ‘all’ and kidney as tissue ‘partial’. We 
scanned all values of the parameters in a grid of values from 2 to 4 using 
linear spacing of 0.2 for each parameter. Notably, for each value of the 
parameters, both in the reference-derived and the outgroup-specific 
comparisons, the precision of the algorithm when applied to the real data 
was higher than the average precision of the corresponding permutated 
data (Extended Data Fig. 1). Moreover, not a single permutation in any set 
of parameters achieved precision that exceeded that of the real data. The 
optimized values of the parameters are given in Supplementary Table 1.

Some of the optimized parameters take their value at the edge of 
the grid, pointing at the possibility of achieving even higher precision 
using values that are outside the current grid. However, we noticed that 
in these cases precision reaches a plateau, so that the improvement 
is minor when changing the value of the parameter. Combined with 
the fact that values of the parameters outside the grid decreased the 
number of detections and hence reduced the power of the analysis, we 
decided to bound the value of the parameters and not extend the grid 
(Extended Data Fig. 2). The set of optimized parameters is remarkably 
robust to the selection of the training dataset and changed only slightly 
when using other tissue combinations (Supplementary Table 2).

Smoothing data
Smoothing of methylation data in modern samples was performed in 
the cross-validation part only. It was done using a moving average with 
a fixed window size over CpG positions. We used a window size of 31 
CpG positions, to match typical window sizes used for reconstructing 
ancient methylation8,9.

Gene enrichment analysis
A CpG position with a predicted fundamental change is associated 
with a gene if it resides in the gene body or in the promoter region, 
defined as 5,000 bp upstream of the transcription start site to 1,000 bp  
downstream of it. Gene body coordinates and gene names were deter-
mined using the hg19 genome reference downloaded from UCSC 
genome assembly74.

We used DAVID75,76 to test for enrichment of our gene lists in bio-
logical functions. We used all default datasets.

Enhancer enrichment analysis
Enhancer locations were downloaded from EnhancerAtlas77. For 
bone enhancers we used the osteoblasts datasets. For neuron 
enhancers we combined data of embryonic stem cell neurons and 
cerebellum neurons. Enrichment was evaluated using a hyperge-
ometric test followed by Benjamini–Hochberg FDR procedure. 
EnhancerAtlas includes a comprehensive list of genes associated 
with each enhancer. We used DAVID to investigate functional enrich-
ments for genes linked to enhancers that intersect with the detected 
positions. Further, we used MEME-ChIP78 to examine which of the 
positions that overlap enhancers also overlap binding motifs, and 
then used TOMTOM79 to identify transcription factors that bind 
these motifs.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All sequencing and methylation data generated for this study was 
deposited in the National Center for Biotechnology Information’s Gene 
Expression Omnibus under GEO access number GSE276666.

Code availability
The MATLAB code can be downloaded from http://carmelab.huji.ac.il/
software.html.
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Extended Data Fig. 1 | Precision on training set as a function of the parameters ka and kp. Precision of the algorithm in detection of a outgroup-specific 
fundamental changes and b reference-derived fundamental changes, for each value of the parameters ka and kp. In yellow: the precision when running the algorithm 
on real data, in blue: the precision when running on permutations.

http://www.nature.com/natecolevol


Nature Ecology & Evolution

Article https://doi.org/10.1038/s41559-024-02571-w

Extended Data Fig. 2 | Precision versus number of detections. Precision 
reaches plateau in higher values of the parameters, whereas power is decreasing. 
a, Precision and the number of outgroup-specific changes detected as a function 

of the parameter Kp when the other parameters are fixed to the optimized value. 
b, A similar comparison for the parameter Ka while the rest of the parameters are 
fixed to the optimized value .
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Extended Data Fig. 3 | Precision on an independent dataset. Validating the algorithm by measuring precision on independent dataset. To complement the results 
presented in the main text, here chimpanzees were selected as reference and modern humans as target.
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Extended Data Fig. 4 | Mapping of CpG positions in the rhesus genome to the 
human genome. Percentage of CpG positions successfully mapped to a human 
CpG position from rhesus bulk brain samples. If a rhesus CpG position was 

originally mapped by liftOver to coordinate c, the figure shows the percentage of 
positions where the human reference genome has a CpG at coordinate c + shift.
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